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Abstract. The standard determination of the QED coupling on the Z pole is performed using the latest
available data for R. The direct application of analytic continuation techniques is found not to improve the
accuracy of the value of α(M2

Z). However they help to resolve an ambiguity in the values of R in the energy
region

√
s � 2 GeV, which, in turn, reduces the uncertainty in α(M2

Z). Moreover, they provide a sensitive
determination of the mass of the charm quark. The favoured solution, which uses the inclusive data for R
for

√
s � 2 GeV, has a pole mass mc = 1.33 − 1.40 GeV and α−1(M2

Z) = 128.972 ± 0.026; whereas if the
sum of the exclusive channels is used to determine R in this region, we find α−1(M2

Z) = 128.941 ± 0.029.

1 Introduction

The value of the QED coupling at the Z boson mass,
α(M2

Z), is the poorest known of the three parameters nec-
essary to define the standard electroweak model, which,
for example, may be taken to be GF ,MZ and α(M2

Z).
The value of α(M2

Z) is obtained from

α−1 ≡ α(0)−1 = 137.03599976(50) (1)

using the relation

α(s)−1 =
(
1−∆αlep(s)−∆α

(5)
had(s)−∆αtop(s)

)
α−1,

(2)

where the leptonic contribution to the running of α is
known to 3 loops [1]

∆αlep(M2
Z) = 314.98 × 10−4. (3)

From now on we omit the superscript (5) on ∆αhad and
assume that it corresponds to five flavours. We will in-
clude the contribution of the sixth flavour, ∆αtop(M2

Z) =−0.76× 10−4, at the end. To determine the hadronic con-
tribution it is traditional to evaluate

∆αhad(s) = − αs

3π
P

∫ ∞

4m2
π

R(s′)ds′

s′(s′ − s)
(4)

at s = M2
Z , where R = σ(e+e− → hadrons)/σ(e+e− →

µ+µ−).
The main uncertainty in the calculation of ∆αhad

comes from the lack of precise knowledge of R(s′) in the

energy region 1.5 �
√
s′ � 3 GeV, see Fig. 1. In the

upper half of this interval the situation has recently im-
proved with the new (preliminary) BES-II measurements
[2]. Nevertheless there remains a major problem due to
the discrepancy between the inclusive measurements of
e+e− → hadrons and the value of the cross section de-
duced from the sum of all the exclusive hadronic channels
(e+e− → 2π, 3π, . . . ,KK̄, . . .), see Fig. 1.

Recently dispersion relation (4) has been re-evaluated
at s = M2

Z [3,4], incorporating the new BES-II data for
R(s′). In Sect. 2 we give the details of the determination of
[3] and, in particular, expose the dilemma with the input
values of R(s′) in the region

√
s′ � 2 GeV. In Sect. 3,

following Jegerlehner [5], we describe an attempt to better
determine ∆αhad(M2

Z) by evaluating dispersion relation
(4) in the space-like region, at s = −s0 say, and then
using perturbative QCD to analytically continue from s =
−s0 → −M2

Z → M2
Z . Although this procedure is found

to reduce the error associated with the data for R(s′),
it is more than compensated by the uncertainties in the
analytic continuation coming from the choice of the mass
of the charm quark and the QCD scale.

However analytic continuation offers the possibility to
resolve the dilemma in the data for R(s′) in the region√
s′ � 2 GeV (see Sect. 4), and to give a reasonably ac-

curate determination of the pole mass mc of the charm
quark (see Sect. 5). Clearly a resolution of the dilemma
will improve the direct determination of ∆αhad(M2

Z) ob-
tained by evaluating (4) at s =M2

Z . In Sect. 6 we present
our conclusions.
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Fig. 1. The quantity R(s) versus√
s in the critical low energy interval,√
s � 3GeV. The band below

√
s =

2.125GeV illustrates the bounds of the
summed exclusive channels. The inclu-
sive data are explicitly plotted, and
above

√
s = 1.46GeV the curve shows

the central value of their interpolation.
In the overlapping interval there is a
distinct discrepancy between the two
(in principle) complementary measure-
ments. The central perturbative QCD
prediction at O(α3

S) is plotted through
the inclusive region for comparison. Fi-
nally, the vertical lines denote the cen-
tral positions of the φ and J/ψ reso-
nances. (See the note added in proof
for the final BES measurements [25])

Table 1. A detailed breakdown of the individual exclusive
channel contributions to ∆α

(5)
had(M

2
Z). The dominant contribu-

tion arises from the e+e− → π+π−, and the next most signifi-
cant contributions are obtained from e+e− → π+π−π+π− and
e+e− → π+π−π0π0, depicted in Fig. 4. The channels marked
with (1) have been corrected for missing modes. The channel
highlighted by (2) has had the η → 3π contribution subtracted.
Those modes marked by (3) have their contributions deduced
from isospin relations. The modes described in (4) are deduced
from the ‘partially’ inclusive measurements of e+e− → K0

S+X,
with modes explicitly included elsewhere subtracted. We have
checked the contributions to the cross-section from each anni-
hilation channel with the detailed decomposition given in [13],
and find excellent agreement between the two evaluations

Final state ∆α
(5)
had(M

2
Z) · 104

2mπ − 1.46GeV
∆α

(5)
had(M

2
Z) · 104

1.46 − 1.9 GeV

π+π− 33.93 ± 0.52 0.17 ± 0.06
π+π−π0 0.30 ± 0.04 0.17 ± 0.05
π+π−π0π0 2.00 ± 0.08 2.99 ± 0.31
ω π0 (1) 0.12 ± 0.02 0.04 ± 0.01
π+π−π+π− 1.45 ± 0.05 2.29 ± 0.09
π+π−π+π−π0 0.09 ± 0.04 0.70 ± 0.25
π+π−π0π0π0 (3) 0.04 ± 0.05 0.33 ± 0.22
ω π+π− (1) 0.02 ± 0.00
π+π−π+π−π+π− 0.05 ± 0.02
π+π−π+π−π0π0 0.02 ± 0.01 0.82 ± 0.09
π+π−π0π0π0π0 (3) 0.01 ± 0.01 0.61 ± 0.61
η π+π− (2) 0.02 ± 0.02 0.12 ± 0.04
K+K− 0.53 ± 0.05 0.16 ± 0.02
K0

SK
0
L 0.15 ± 0.11 0.04 ± 0.02

K0
SK

+π−(K0
LK−π+)(3) 0.03 ± 0.01 0.28 ± 0.05

K+K−π0 0.10 ± 0.07
K0

SK
0
Lπ0 (3) 0.10 ± 0.07

KK̄ππ(4) 0.01 ± 0.25 1.04 ± 0.67

Sum of contributions 38.76 ± 0.79 10.32 ± 1.06

2 Direct determination of ∆αhad(M2
Z)

In this section we give the details of the recent deter-
mination1 of ∆αhad(M2

Z) that was presented in [3]. We
evaluated dispersion relation (4) at s =M2

Z using the ex-
perimental data [2,6–9] for R(s′) in the intervals 2mπ <√
s′ < 2.8 GeV and 3.74 <

√
s′ < 5 GeV, together with

the J/ψ, ψ′ and Υ resonance contributions. In the remain-
ing regions (2.8 <

√
s′ < 3.74 and

√
s′ > 5 GeV) we

calculate R(s′) from perturbative QCD using the two-
loop expression with the mc and mb quark masses in-
cluded and the massless three-loop expression [10] calcu-
lated in the MS renormalization scheme2. We estimate
the ‘perturbative’ error on R(s′) by allowing mc,mb,MZ

to vary within the uncertainties quoted in [12], by tak-
ing αS(M2

Z) = 0.119 ± 0.002 and by varying the scale of
αS(cs) in the range 0.25 < c < 4.

The errors on the ‘data’ values of R(s′) are calculated
using a correlated χ2 minimization to combine the dif-
ferent data sets, as described in detail in [13]. The data,
together with the error band used in the 3.74 <

√
s′ <

5 GeV interval, are shown in Fig. 2. For
√
s′ < 1.46 GeV

the sum of the data for the exclusive channels is used to
compute R(s′), see Table 1. Recently there have been im-
provements in our knowledge of the exclusive channels.
This can be seen, for example, in the data [7] for the 2π
channel shown in Fig. 3, or the data [8] for the 4π channel
shown in Fig. 4.

For
√
s′ > 1.46 GeV we also have inclusive measure-

ments of R(s′). These differ significantly from the sum of

1 A correction to the analysis of [3] shifts the value of ∆αhad

by 0.44 × 10−4

2 The uncertainty due to using a different scheme may
be estimated to be of the order of the O(α4

S) correction,
3Σe2

qr3(αS/π)4. We may take r3 = −128 [11] which leads to a
negligible uncertainty in R(s′)
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Fig. 2. The quantity R(s) in the vicin-
ity of the charm threshold 3.74 �√
s � 5GeV. The Mark 1, DASP and

PLUTO data have been scaled by fac-
tors of 0.84, 0.88 and 0.95 so as to agree
with the perturbative QCD prediction
in the continuum regions safely above
and beneath threshold. To guide the
eye, vertical lines denoting the position
of the ψ(4040), ψ(4160) and ψ(4415)
resonance centres have been superim-
posed. The band illustrates the inter-
polation derived from the compilation
of the (rescaled) data. The perturbative
prediction for R to O(α3

S) is depicted
in the continuum. The evaluations of
∆αhad in this work use the perturba-
tive prediction for R(s) in the regions
2.8 <

√
s < 3.74 GeV and

√
s > 5 GeV
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Fig. 3. The cross-section for pion pair
production, σππ(s), versus

√
s around

the ρ-resonance region, 2mπ <
√
s �

1GeV. The data [7] include the recent,
accurate results from Novosibirsk. The
band illustrates the spread of uncer-
tainty about a central value interpo-
lated from the data compilation. The
line at low energies shows the chiral ex-
pansion of the two pion cross-section
[14]
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Fig. 4. The cross-section (in nb) of the
four pion channels in e+e− annihila-
tion. The bands again show the inter-
polation through the data [8,9]
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Fig. 5. Our determinations of α−1(M2
Z) compared to two re-

cent other determinations [4,5], as well as two much earlier
evaluations [15,16]

the exclusive channels, see Fig. 1. This poses a dilemma.
The new (preliminary) BES-II data [2], which extend
down to

√
s′ = 2 GeV, appear to match better to the inclu-

sive measurements, but the distinction is not conclusive.
We therefore, throughout this paper, take two alternative
choices of the data in the interval 1.46 <

√
s′ < 1.9 GeV.

We first use the inclusive data and then we repeat the anal-
ysis using the exclusive data (with the error band shown
in Fig. 1). For simplicity, we refer to these as the ‘inclu-
sive’ and ‘exclusive’ data choices. In the later sections of
this paper we study ways to resolve this dilemma and we
present evidence which favours the ‘inclusive’ behaviour
of R(s′) in this interval. In Table 2 we list the contri-
butions to the dispersion relation (4) from specific

√
s′

intervals for both the above choices of data. In the Table
we also include the corresponding values of ∆α(5)

had(M
2
Z)

and α−1(M2
Z). We see that the ambiguity in the input for

R(s′) in the region
√
s′ � 2 GeV itself leads to an uncer-

tainty of the size of the quoted errors on ∆α(5)
had(M

2
Z). We

attempt to resolve this ambiguity in Sect. 4.
The values that we obtain for α−1(M2

Z) are compared
with other recent determinations in Fig. 5. We also include
on this plot two 1994- 5 determinations in order to gain
some insight. First, we show the value obtained by Mar-
tin and Zeppenfeld [15] which made use of perturbative
QCD, as has become common practice, and which used
‘inclusive’ data for

√
s′ > 1.46 GeV and rescaled data in

the charm resonance region. Second, we show the value of
Eidelman and Jegerlehner [16] which was obtained using
data in all intervals, and hence the larger errors. For in-
terest, we compare the individual contributions and errors
of our present ‘inclusive’ determination with those of the
1995 analysis of Eidelman and Jegerlehner in Table 3.

In Fig. 6 we show the χ2 profiles3 obtained using the
‘inclusive’ and ‘exclusive’ determinations of the QED cou-
pling α(M2

Z) in fits to the latest compilation of electroweak
data for different values of the mass of the (standard
Model) Higgs boson. We see that the minimum obtained
using the ‘inclusive’ value, α(M2

Z) = 1/128.972, is close to
the LEP2 bound on the Higgs mass.

3 We thank Martin Grünewald for making this plot
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Fig. 6. χ2 fit as a function of the standard model Higgs
mass, MH , to the latest compilation of electroweak data, ob-
tained using the ‘inclusive’ and ‘exclusive’ determinations of
∆α

(5)
had(M

2
Z)·104 of 274.3 (continuous curve) and 276.5 (dashed

curve). The shaded zone to the left illustrates the energy in-
terval where the Higgs has been excluded by direct searches at
LEP2

3 Analytic continuation
in the space-like region

There have been several studies [17,5] of analytic be-
haviour in the complex s-plane in attempts to reduce the
dependence of the determination of ∆αhad(M2

Z) on the
observed values of R in the region in which it is poorly
known. These techniques have been reviewed by
Jegerlehner [5]. He concludes that it is difficult to re-
duce the error on ∆αhad due to the data in this way. He
advocates the following analytic continuation method to
determine ∆αhad(M2

Z). First, evaluate (4) for space-like
s = −s0 and then use perturbative QCD to continue to
s = −M2

Z , that is

∆αhad(−M2
Z) =

[
∆αhad(−M2

Z) − ∆αhad(−s0)
]QCD

+∆αhad(−s0)data (5)

where s0 is chosen sufficiently large (
√
s0 � 2 GeV) for the

QCD contribution in square brackets to be known accu-
rately4, such that the error in ∆αhad(−M2

Z) dominantly
reflects the error in the data for R(s′). The error associ-
ated with the final continuation round the semicircle to
∆αhad(M2

Z) is negligible

∆αhad(M2
Z) = ∆αhad(−M2

Z)+(0.42±0.02)×10−4. (6)

Jegerlehner [5] chose
√
s0 = 2.5 GeV and found5

∆αhad(M2
Z) = (277.82 ± 2.54) × 10−4 (7)

where the error was entirely attributed to that for the
contribution ∆αhad(−s0)data to (5).

We will examine this proposal below. In particular we
will investigate whether it is possible to develop this tech-
nique either to select between the inclusive/exclusive R(s′)

4 Previous studies [18] had indicated how large s0 had to be
to avoid uncertainties due to parton condensate contributions

5 The recent BES-II data [2] were not available for the anal-
ysis of [5]
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Table 2. The individual contributions to the hadronic component of the shift in fine
structure constant, ∆α

(5)
had(M

2
Z) · 104. The upper (lower) error in the result labelled

a corresponds to the 2π (remaining) exclusive channels. Contributions labelled with
superscripts b, c and d have common error sources which are added linearly. Re-
maining errors are added in quadrature

√
s interval (GeV) ∆α

(5)
had(M

2
Z) · 104 contribution Origin of contribution

2mπ − 1.46a 38.76 ±
{

0.52
0.60b

}
Pion form factor data

1.46 - 1.90

{
8.62 ± 0.60c

10.32 ± 1.06b

{
Inclusive data

Exclusive summation

1.90 - 2.80

{
13.26 ± 0.83c

13.79 ± 0.83

{
Inclusive data

Exclusive summation
2.80 - 3.74 9.73 ± 0.05d Perturbative QCD
3.74 - 5.00 15.13 ± 0.36 Charm data
5.00 - ∞ 169.97 ± 0.64d Perturbative QCD
ω, φ, ψ’s, Υ ’s 18.79 ± 0.58 Breit-Wigner resonances

∆α
(5)
had(M

2
Z) · 104

{
274.26 ± 1.90
276.49 ± 2.14

{
Inclusive data

Exclusive summation

α−1(M2
Z)

{
128.972 ± 0.026
128.941 ± 0.029

{
Inclusive data

Exclusive summation

Table 3. A comparison of the individual contributions to ∆α
(5)
had(M

2
Z) ·104 found in the 1995 ‘data-driven’

analysis of Eidelman and Jegerlehner [16], with those of our inclusive analysis, decomposed according to
the energy intervals used in [16]

Final state
√
s interval (GeV) Contribution from [16] Current evaluation

ρ 2mπ - 0.81 26.08 ± 0.68 25.32 ± 0.52
ω 0.42 - 0.81 2.93 ± 0.09 3.07 ± 0.10
φ 1.00 - 1.04 5.08 ± 0.14 5.08 ± 0.19
J/ψ 11.34 ± 0.82 9.41 ± 0.53 (+1.93=11.35)
Υ 1.18 ± 0.08 1.22 ± 0.04
hadrons 0.81 - 1.40 13.83 ± 0.80 12.24 ± 0.54

hadrons 1.40 - 3.10 27.62 ± 4.02



1.40 − 1.46 1.21 ± 0.07 Exc.
1.46 − 2.8 21.88 ± 1.43 Inc.
2.8 − 3.10 3.43 ± 0.02 pQCD.




hadrons 3.10 - 3.60 5.82 ± 1.16 5.02 ± 0.03

hadrons 3.60 - 9.46 50.60 ± 3.33



3.60 − 3.74 1.28 ± 0.01 pQCD.

3.74 − 5.0 15.13 ± 0.36 Inc.
5.0 − 9.46 35.51 ± 0.21 pQCD.




hadrons 9.46 - 40.0 93.07 ± 3.50 91.77 ± 0.19
perturbative QCD 40.0 - ∞ 42.82 ± 0.10 42.70 ± 0.24

Total 2mπ - ∞ 280.37 ± 6.54 274.26 ± 1.90

data choices in the region
√
s′ � 2 GeV, or to reduce the

importance of the data contribution (and its associated
error) from this domain.

Suppose, for example, we evaluate α(M2
Z) from (4), (5)

and (6) for a range of different values of s0. In principle,
we should always get the same answer. If the answer varies
significantly either the data forR(s′) is not quite correct or
the theory input is deficient in some way or, more likely,
it is a combination of both. The interplay between the

uncertainties in the theory and the data (that is, in the
two terms on the right-hand-side of (5)) play a crucial role
in this type of analysis. If it is possible to find a choice of
input data, together with a physically meaningful set of
theory parameters (charm mass mc, choice of scale etc.),
which give a stable value of α(M2

Z) for different choices of
s0, then it will be a powerful argument in favour of their
veracity.
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Indeed, imagine one extreme in which the theory con-
tribution to (5) was known precisely; that is, there is no
error associated with the term in square brackets. Then
the behaviour of the variation of α(M2

Z) as a function of
s0 would highlight the domain (or domains) in which the
data were wrong and, moreover, specify the approximate
corrections that are necessary.

In this section we evaluate∆αhad(s) of (4) in the space-
like domain s = −s0 (with s0 > 0) for a range of different
values of s0. For each s0 we then use perturbative QCD
to perform the analytic continuation to s =M2

Z , as given
in (5) and (6). A sample of the results for ∆αhad(−s0) is
presented in Table 4, together with the conventional time-
like evaluation of (4) at s = +M2

Z . We see that the error
on the space-like evaluation of ∆αhad(−s0) is reduced as
s0 is decreased in comparison to that for s = ±M2

Z . This
reduction may be anticipated, since from the form of (4)
we see that the error mainly arises from uncertainties in
the data for R(s′) with s′ � |s0|.

Let us illustrate this point in more detail. If we com-
pare the calculation of ∆αhad(−s0)data with the direct
evaluation of ∆αhad(−M2

Z)
data, then essentially we make

the replacement

M2
ZR(s

′)
s′ +M2

Z

� R(s′) → s0R(s′)
s′ + s0

(8)

in the integrand of (4), where for simplicity we consider
s′ 	 M2

Z . Then we add to ∆αhad(−s0)data the QCD
term [∆αhad(−M2

Z) − ∆αhad(−s0)]QCD, as in (5). That
is, if we compare the analytic continuation determina-
tion, (5), of ∆αhad(−M2

Z) with the direct determination
∆αhad(−M2

Z)
data, then effectively we make the replace-

ment

R(s′)data → s0R(s′)data + s′R(s′)QCD

s0 + s′ (9)

for s′ 	 M2
Z . Thus for s

′ 	 s0 we keep all the data, while
if s′ ∼ s0 we use pQCD to replace about half of the data,
and for s′ � s0 we discard almost all the data in favour of
pQCD. Thus the lower that we can take s0, the smaller the
data contribution, and hence the smaller its contribution
to the error on ∆αhad(±M2

Z).
However before we can take advantage of the reduc-

tion of the uncertainty associated with the data, we must
consider the error in the perturbative QCD continuation
from s = −s0 to s = −M2

Z . That is the error on

δ(s0) ≡ [
∆αhad(−M2

Z) − ∆αhad(−s0)
]QCD

= −4πα
∫ −M2

Z

−s0

ds′ dΠ(s′)
ds′ , (10)

where Π, the hadronic contribution to the photon vacuum
polarisation amplitude, satisfies

∆αhad(s) = −4παReΠ(s), R(s) = 12πImΠ(s).
(11)

The error associated with the remaining analytic contin-
uation round the semicircle from s = −M2

Z to s = M2
Z is

much smaller and may be neglected, see (6).
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Fig. 7. Figure illustrating the efficacy of the Padé interpola-
tion technique through threshold for µ = 20GeV and a charm
mass of mc = 1.4 GeV as a generic example. The O(α2

S) contri-
bution to the AdlerD-function is shown as high and low energy
expansions, for (i) the pseudo-Abelian contribution containing
no internal loops, (ii) the non-Abelain contributions contain-
ing triple gluon vertices, (iii) the contribution corresponding
to the radiation of an internal light quark loop from a massive
external quark loop, and (iv) contribution corresponding to the
radiation of an internal massive quark loop, of the same mass
scale as a massive external quark loop. The Padé threshold in-
terpolation (continuous curve) becomes indistinguishable from
the mass expansions away from threshold

To evaluate δ(s0) of (10) we use the known expression
for Π(s) to O(α3

S). For the O(1) and O(αS) contributions
we use the full analytic formula [19], which includes the
dependence on the quark masses. The O(α2

S) contribution
is evaluated in terms of the high (m2

q/s) and low energy
(s/m2

q) expansions [20] using a (4/4) Padé interpolation6

for s ∼ 4m2
q [21] and, finally, the massless quark limit of

the O(α3
S) contribution is used. The expressions are valid

for fixed coupling αS(µ2). In Table 5 we show the indi-
vidual contributions to δ(s0) for a choice mc = 1.4 GeV
of the pole mass of the charm quark and µ = 20 GeV
of the QCD scale. Unfortunately there are appreciable
uncertainties in the perturbative QCD determination of
δ(s0) arising from the sensitivity to the values taken for
mc (and mb) and the QCD scale µ. In addition, in a re-
cent paper Chetyrkin et al. [22] have evaluated the m4/s2

term in the O(α3
S) contribution to R(s′). Of course know-

ing just the first two terms [23,22] in the m2/s expansion
is not sufficient to calculate the O(α3

S) heavy quark effect,
which comes mainly from the threshold region. However
knowledge of these terms enables us to estimate the typi-
cal size of the O(α3

S) mass contribution to be of the order
of (0.2 − 0.5) × 10−4. In total, these ‘theoretical’ uncer-
tainties in the QCD contribution to (5) are comparable
with the error presented in Table 1 for the direct evalua-
tion of ∆αhad(M2

Z). We conclude that although the error

6 An example of the power of the Padé interpolation is shown
in Fig. 7. To calculate the O(α2

S) contribution to δ(s0) we
perform the appropriate integration of the Padé interpolation
over the interval s = −s0 to s = −M2

Z
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Table 4. Explicit breakdown of the contributions to ∆α
(5)
had(s = −s0) in the spacelike region for 6GeV2 ≤ s0 ≤

M2
Z . Again we show alternative results for the energy intervals 1.46 ≤ √

s′ ≤ 2.8GeV2 and the final sum, where
the upper (lower) braced entry corresponds to the use of inclusive (exclusive) data. The perturbative contributions
here were evaluated with all u, d, s, c and b flavours in their active domains, and five light quarks contributing
internal loops at O(α2

S) and O(α3
S). The scale is taken as µ = 20GeV, the c pole mass as 1.4GeV and the b pole

mass as 4.7GeV. For convenience we show in the last column the direct evaluation of Section 2, except that here,
for consistency with the space-like evaluations, we use a fixed QCD scale µ = 20 GeV and five light quarks in the
internal loops. The individual errors are combined as in Table 2
√
s′ interval (GeV) s = −6GeV2 s = −15GeV2 s = −50GeV2 s = −M2

Z s = M2
Z

2mπ − 0.81 23.40 ± 0.48 24.51 ± 0.50 25.07 ± 0.51 25.31 ± 0.52 25.31 ± 0.52
0.81 − 1.46 11.31 ± 0.50 12.49 ± 0.56 13.14 ± 0.59 13.45 ± 0.60 13.45 ± 0.61

1.46 − 1.9

{
5.90 ± 0.40
7.05 ± 0.72

{
7.27 ± 0.50
8.70 ± 0.89

{
8.17 ± 0.56
9.77 ± 1.00

{
8.62 ± 0.60
10.31 ± 1.06

{
8.62 ± 0.60
10.32 ± 1.06

1.9 − 2.8

{
6.95 ± 0.44
7.28 ± 0.44

{
9.70 ± 0.61
6.67 ± 0.16

{
11.93 ± 0.75
12.42 ± 0.75

{
13.24 ± 0.83
13.77 ± 0.83

{
13.26 ± 0.83
13.79 ± 0.83

2.8 − 3.74 3.53 ± 0.01 5.68 ± 0.02 7.98 ± 0.03 9.65 ± 0.03 9.67 ± 0.03
3.74 − 5 3.65 ± 0.09 6.67 ± 0.16 10.92 ± 0.26 15.06 ± 0.36 15.13 ± 0.36
5 − ∞ 6.11 ± 0.02 13.36 ± 0.09 31.38 ± 0.18 169.99 ± 0.52 170.23 ± 0.53
ω, φ, ψ’s, Υ ’s 10.60 ± 0.27 13.37 ± 0.38 16.17 ± 0.49 18.73 ± 0.58 18.79 ± 0.58

∆αdata
had (−s) · 104

{
71.45 ± 1.13
72.93 ± 1.41

{
93.05 ± 1.41
94.91 ± 1.70

{
124.76 ± 1.64
126.85 ± 1.92

{
274.05 ± 1.86
276.27 ± 2.12

{
274.46 ± 1.86
276.69 ± 2.12

Table 5. The individual contributions to δQCD(s0) ≡ [
∆αhad(−M2

Z) − ∆αhad(s0)
]QCD

to O(α3
S) from the u, d, s and c flavours. Note that the QCD contributions in the earlier

Table 4 also include the b quark

Contribution Flavour s0 = 6GeV2 15 25 50 100 502

O(1) u, d, s 112.02 97.83 89.92 79.19 68.46 18.61
O(αS) 5.53 4.83 4.44 3.91 3.38 0.92
O(α2

S) 0.69 0.39 0.25 0.10 -0.03 -0.15
O(α3

S) 0.38 0.22 0.15 0.08 0.04 0.01

O(1) c 64.17 59.62 56.20 50.72 44.54 12.37
O(αS) 5.20 4.41 3.92 3.27 2.67 0.64
O(α2

S) 1.62 1.08 0.78 0.44 0.18 -0.10
O(α3

S) 0.26 0.14 0.10 0.06 0.03 0.01

δQCD(s0) · 104 u, d, s, c 189.87 168.53 155.76 137.76 119.28 32.31

on ∆αhad(−s0), with s0 = 6 GeV2, is considerably im-
proved in comparison to that for the direct determination
of ∆αhad(M2

Z), nevertheless the uncertainties in the ana-
lytic continuation from −s0 to M2

Z means that the accu-
racy to which∆αhad(M2

Z) is known has not been improved
by the analytic continuation approach.

4 Resolution
of the “inclusive-exclusive” ambiguity

We have seen that analytic continuation does not appear
to allow us to reduce the uncertainty in the determination
of ∆αhad(M2

Z). However if we turn the analysis around we
have the possibility to

(i) distinguish between the inclusive and exclusive data
for R(s) for

√
s � 2 GeV,

(ii) constrain the value of the charm mass mc.

To do this we study the difference between the ‘direct’
prediction for ∆αhad(M2

Z) (shown in the last column of
Table 4) and the values obtained via the analytic continu-
ation method of (5) and (6). Let us denote the difference
of the two determinations by d(s0), that is

d(s0) ≡ ∆αhad(M2
Z)

∣∣
direct−∆αhad(M2

Z)
∣∣
anal. cont. from s0

.

(12)
A self-consistent analysis requires that d(s0) � 0 for all
values of s0. Of course the perturbative QCD contribution
depends on the value taken for the charm massmc and the
scale µ. We therefore proceed in stages. First we remove
the dependence on mc (and mb). We include only con-
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Table 6. The discrepancy d(s0) × 104 of (12) for space-like
evaluations at s = −s0 for three different scales µ (in GeV).
In the first half of the table the inclusive data for R(s′) are
used in the region

√
s′ � 2 GeV, whereas in the second half

the exclusive data are taken

s0 inclusive data exclusive data
GeV2 µ = 10 µ = 20 µ = 50 µ = 10 µ = 20 µ = 50

6 -0.31 -0.12 0.03 0.43 0.62 0.77
15 -0.16 -0.03 0.07 0.20 0.33 0.43
25 -0.13 -0.01 0.06 0.11 0.23 0.30
50 -0.11 -0.03 0.04 0.02 0.10 0.17
100 -0.07 0.00 0.04 -0.01 0.06 0.10

tributions from u, d and s quarks, and substitute for the
data and resonances in the charm (and bottom) threshold
regions with the values obtained from three-flavour per-
turbative QCD. The results for the discrepancy d(s0) are
shown in Table 6 for three different choices of the scale µ.
It is immediately seen that, in general, if we use the inclu-
sive R(s′) data in the region

√
s′ � 2 GeV we obtain better

agreement (that is a smaller discrepancy d(s0)) than if we
use the exclusive data. Moreover the scale µ2 should be
representative of the interval of continuation from s = −s0
to s = −M2

Z , and µ = 20 GeV is a reasonable choice. If we
assume that the systematic discrepancy d(s0) comes from
a local region s′ � sp then the additional contribution to
the dispersion integral may be approximated by7

d(s0) � α

3π

∫
ds′ δ(s′ − sp)

Rp

(s′ + s0)

� αRp

3π(s0 + sp)
. (13)

In fact the differences d(s0) for the exclusive data at µ =
20 GeV are well described by this simple pole form with

√
sp = 2.1 GeV, Rp = 0.8 GeV2. (14)

This is consistent with the exclusive contribution being
too large in the region

√
s′ ∼ 2 GeV. We may conclude

the three-flavour analysis of this section favours the in-
clusive data for R(s′) for

√
s′ � 2 GeV and, moreover,

gives a remarkably consistent description with d(s0) � 0
for different choices of s0 for scale choices in the region
20–50 GeV.

5 Implications for the charm mass

We now extend the ‘discrepancy’ analysis of the previous
section to four-flavours and reinstate the data for R(s′)
in the charm threshold region (that is the J/ψ, ψ′ and
3.74 <

√
s′ < 5 GeV). We show the results in Table 7 for

7 We may use the unsubtracted form of the dispersion inte-
gral since in a difference calculation the subtraction constant
will cancel

a range of choices of the charm mass mc, taking the scale
µ = 20 GeV. We see a systematic trend of the behaviour
of d(s0) with mc and that the choice mc = 1.40 GeV
gives good consistency for all s0 if the inclusive data are
used in the region

√
s′ � 2 GeV. The numbers in brackets

in Table 7 correspond to using the exclusive data up to√
s′ � 2 GeV. There is no choice ofmc that gives the same

consistency as for the inclusive data. The optimum value
appears to be mc = 1.34 GeV.

The discrepancies d(s0) were fitted to the pole form
(13), and the parameters (the residue Rp and pole position
sp) are given in Table 8. Again we see the inclusive data
select mc = 1.40 GeV (for µ = 20 GeV) and that as we
depart from this value the additional pole contribution is
such as to compensate for the poorer choice of mc. For the
exclusive data we confirm that the valuemc = 1.34 GeV is
optimum, but that the pole compensation for other choices
ofmc is more more erratic. We repeated the whole analysis
for scale µ = 50 GeV. The pole parameters which fit the
discrepancy d(s0) in this case are also shown in Table 8 (in
the last two columns). For this choice of µ, the inclusive
data givemc = 1.33 GeV whereas the exclusive data select
mc = 1.26 GeV.

Our determinations of mc refer to the pole mass of the
charm quark. However the PDG [12] gives the value of the
charm mass mc(µ = mc) in the MS scheme, that is the
running mass at scale mc. They quote mc(mc) = 1.25 ±
0.10 GeV, which is determined from charmonium and D
meson masses. In our calculation the pole mass naturally
occurs in the space-like continuation, with the ‘running’
included in the expression for the vacuum polarisation.
The PDG value corresponds to a pole mass mc = 1.46 ±
0.11 GeV. We summarize the determinations8 in Table 9.

Again we see that the results favour the inclusive mea-
surement of R(s) in the region

√
s � 2 GeV. First, the in-

clusive data satisfy the self-consistency check d(s0) � 0 for
different s0 for some value ofmc, better than the exclusive
data, see Table 7. Second, the prediction for the pole mass
mc = 1.33 − 1.40 GeV is in better agreement with PDG
expectations than our prediction mc = 1.26 − 1.34 GeV
obtained using the exclusive data.

6 Summary

Traditionally the value of the QED coupling on the Z pole
has been determined by evaluating the dispersion relation,
(4), for ∆αhad(s) at s = M2

Z . In Sect. 2 we presented an
updated calculation of ∆αhad(M2

Z) using the latest avail-
able data for R ≡ σ(e+e− → hadrons)/σ(e+e− → µ+µ−).
The main uncertainty is the input for R(s′) in the region
1.5 �

√
s′ � 3 GeV. The new (preliminary) BES-II data

[2] have improved the knowledge of R(s′) in the upper part
of this region, so that the error on ∆αhad(M2

Z) is about±2×10−4 corresponding to about ±0.03 on α−1(M2
Z) [3].

8 Some years ago an analysis [24] of the moments of Rc(s),
obtained from e+e− → cc̄ annihilation, gave mc = 1.34 ±
0.02 GeV
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Table 7. The discrepancy d(s0) ≡ δdata(s0)− δQCD(s0) for a spectrum of charm pole masses and the
lower QCD scale µ = 20GeV. The entries (bracketed) correspond to the use of the interpolations of
the inclusive (exclusive) R(s′) data in the region

√
s′ � 2 GeV of the dispersion integral (4)

mc(GeV) d(s0 = 6GeV2) · 104 d(15) · 104 d(25) · 104 d(50) · 104 d(100) · 104

1.46 0.57 (1.31) 0.36 (0.72) 0.23 (0.47) 0.10 (0.23) 0.04 (0.10)
1.44 0.39 (1.13) 0.24 (0.60) 0.16 (0.40) 0.06 (0.19) 0.03 (0.09)
1.42 0.20 (0.93) 0.12 (0.48) 0.07 (0.31) 0.02 (0.15) 0.00 (0.06)
1.40 0.00 (0.75) 0.01 (0.37) 0.00 (0.24) −0.03 (0.10) −0.03 (0.03)
1.38 −0.17 (0.57) −0.09 (0.27) −0.08 (0.16) −0.07 (0.06) −0.04 (0.02)
1.36 −0.37 (0.37) −0.21 (0.15) −0.16 (0.08) −0.11 (0.02) −0.06 (−0.01)
1.34 −0.57 (0.17) −0.33 (0.03) −0.24 (−0.00) −0.16 (−0.03) −0.09 (−0.03)
1.32 −0.74 (−0.01) −0.43 (−0.07) −0.31 (−0.07) −0.19 (−0.06) −0.11 (−0.05)
1.30 −0.94 (−0.20) −0.54 (−0.18) −0.39 (−0.15) −0.25 (−0.12) −0.14 (−0.08)
1.28 −1.11 (−0.38) −0.64 (−0.28) −0.45 (−0.21) −0.28 (−0.15) −0.15 (−0.09)
1.26 −1.32 (−0.58) −0.76 (−0.40) −0.53 (−0.29) −0.32 (−0.19) −0.18 (−0.12)

Table 8. The parameters (Rp, sp) describing the simple pole
fits, (13) to the residual function d(s0) for the spectrum of
charm masses. The entry denoted by (∗∗, ∗∗) corresponds to
a residual sufficiently close to 0 for all s0 to render the fitting
procedure inappropriate

‘Inclusive’ ‘Exclusive’ ‘Inclusive’ ‘Exclusive’
mc(GeV) µ = 20GeV µ = 20GeV µ = 50GeV µ = 50GeV

1.46 (0.9, 6.4) (1.8, 4.4) (2.3, 9.4) (3.1, 6.6)
1.44 (0.6, 5.8) (1.5, 3.9) (2.0, 10.0) (2.8, 6.6)
1.42 (0.3, 4.5) (1.1, 3.3) (1.7, 10.7) (2.5, 6.5)
1.40 (0.0, −4.6) (0.8, 2.4) (1.3, 10.8) (2.1, 6.1)
1.38 (−0.4, 14.4) (0.5, 1.3) (1.0, 12.3) (1.8, 5.8)
1.36 (−0.7, 9.8) (0.3, −0.8) (0.7, 17.8) (1.4, 5.6)
1.34 (−1.1, 8.9) (−0.0, −5.1) (0.85, 117.3) (1.1, 5.3)
1.32 (−1.3, 7.7) (∗∗, ∗∗) (−0.1, −1.8) (0.8, 4.6)
1.30 (−1.7, 8.0) (−1.6, 57.5) (−0.4, 2.9) (0.5, 2.9)
1.28 (−1.9, 7.2) (−1.3, 21.0) (−0.7, 3.8) (0.2, 0.8)
1.26 (−2.2, 7.1) (−1.5, 14.7) (−0.9, 4.0) (−0.0, −8.3)

However this error does not take full account of the ef-
fects of the discrepancy between the inclusive measure-
ment of R(s′) and the sum of the exclusive channels in
the energy region

√
s′ � 2 GeV. This discrepancy in R(s′)

leads, on its own, to a difference of 2.3×10−4 in the value
of ∆αhad(M2

Z); see Table 2. Clearly it is important to re-
solve the dilemma.

We confirm the general conclusion of Jegerlehner [5]
that analytic continuation does not improve the accuracy
of the determination ∆αhad(M2

Z). We find the evaluation
of ∆αhad(s) at the space-like value s = −s0 = −6 GeV2

has a reduced error of ±1.4×10−4. However the reduction
in the error is more than offset by the uncertainty in the
perturbative QCD analytic continuation from s = −s0 to
s = −M2

Z , which arises from its dependence on the choice
of charm mass and of the QCD scale.

On the other hand the evaluation of (4) at different
space-like values s = −s0 proves to be very informative.

Table 9. The pole mass of the charm quark determined
from demanding self-consistency of the space-like evaluation of
∆αhad (that is requiring the discrepancy d(s0)  0 for all s0),
compared to the PDG value [12]. Inclusive (exclusive) mean
that R(s′) is determined from inclusive data (sum of the ex-
clusive channels) in the region

√
s′ � 2 GeV. In both cases

the lower and upper values quoted for mc correspond to scale
choices µ = 50 and 20 GeV respectively

Source mc (GeV)

inclusive 1.33–1.40
exclusive 1.26–1.34

PDG 1.46±0.11

For each evaluation ∆αhad(s0) at a different, but suffi-
ciently large, s0, we can analytically continue to s = −M2

Z ,
and then around the semicircle in the complex plane to s =
M2

Z , using perturbative QCD. We can compare these de-
terminations of ∆αhad(M2

Z) with the traditional method
of directly evaluating (4) at s = M2

Z . In fact we found it
convenient to study the difference

d(s0) ≡ ∆αhad(M2
Z)

∣∣
direct−∆αhad(M2

Z)
∣∣
anal. cont. from s0

(15)
as a function of s0. A self-consistent analysis requires d(s0)
� 0 for all choices of s0.

Indeed we found that the study of d(s0) sheds light on
the ‘inclusive’ versus ‘exclusive’ data dilemma, and pro-
vides evidence in favour of the former. But first we noted
that the perturbative QCD analytic continuation was sen-
sitive to the pole massmc of the charm quark, as well as to
the QCD scale µ. To eliminate the dependence onmc (and
mb) we evaluated d(s0) using the data for R(s′) in the re-
gion 2mπ <

√
s′ < 2.8 GeV and three-flavour perturbative

QCD elsewhere. We performed the analysis using first the
inclusive, and then the exclusive, data for

√
s′ � 2 GeV;

in each case for three choices of the QCD scale. We found
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the ‘inclusive’ d(s0) values were more self-consistent than
the ‘exclusive’ behaviour of d(s0).

We exploited the sensitivity of the d(s0) analysis to
the pole mass of the charm quark in order to determine
the value of mc. To do this we repeated the above proce-
dure with the charm data reinstated and used four-flavour
QCD. If the ‘inclusive’ data are used, we found that in-
deed there is a unique value of mc for which we obtain
the same ∆αhad(M2

Z) for the different space-like s = −s0
values and for the direct evaluation at s = M2

Z . In this
way, we determine the pole mass to be

mc = 1.33− 1.40 GeV, (16)

if the QCD scale is µ = 50 or 20 GeV respectively. Just as
in the three-flavour study, we found that the four-flavour
analysis is less consistent if the ‘exclusive’ data choice is
employed.

In summary, we have presented quite a body of evi-
dence to show that self-consistency of the results for the
space-like and time-like evaluation of dispersion relation
(4) selects the inclusive measurements of R(s′) in the re-
gion 1.46 <

√
s′ < 1.9 GeV, as compared to the values

of R(s′) deduced from the sum of the exclusive channels.
Thus we conclude that

∆α
(5)
had(M

2
Z) = (274.26± 1.90) × 10−4, (17)

and hence that

α−1(M2
Z) = 128.972 ± 0.026. (18)

The corresponding results using the exclusive data, which
are not favoured, are (276.49±2.14)×10−4 and 128.941±
0.029. Precise measurements of R(s′) in the energy region√
s′ � 2 GeV are necessary to confirm our conclusion and,

more important, to improve the precision in the determi-
nation of the QED coupling on the Z pole.
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Note added in Proof: The final BES measurements
have just become available, see [25]. The measurements
of R at

√
s = 2, 2.2, 2.4 and 2.5 GeV are slightly higher

than the preliminary measurements [2]. In fact the lat-
ter three points now lie on our input curve for R that is
shown in Fig. 1. The point at

√
s = 2 GeV has increased

by about 5% to R = 2.18 ± 0.07 ± 0.18 [25]. These small
changes do not affect the results presented in this paper.


